54 research outputs found

    Heartbeat Classification in Wearables Using Multi-layer Perceptron and Time-Frequency Joint Distribution of ECG

    Full text link
    Heartbeat classification using electrocardiogram (ECG) data is a vital assistive technology for wearable health solutions. We propose heartbeat feature classification based on a novel sparse representation using time-frequency joint distribution of ECG. Fundamental to this is a multi-layer perceptron, which incorporates these signatures to detect cardiac arrhythmia. This approach is validated with ECG data from MIT-BIH arrhythmia database. Results show that our approach has an average 95.7% accuracy, an improvement of 22% over state-of-the-art approaches. Additionally, ECG sparse distributed representations generates only 3.7% false negatives, reduction of 89% with respect to existing ECG signal classification techniques.Comment: 6 pages, 7 figures, published in IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE

    Selective beat averaging to evaluate ventricular repolarization adaptation to deconditioning after 5 days of head-down bed rest

    Get PDF
    The study of QT/RR relationship is important for the clinical evaluation of possible risk of ventricular tachyarrhythmia. Our aim was to assess the effects of 5-days of head-down (-6 degrees) bed-rest (HDBR) on ventricular repolarization. High fidelity 12-leads Holter ECG was acquired before (PRE), the last day of HDBR (HDT5), and five days after its conclusion (POST). X, Y, Z leads were derived (inverse Dower matrix) and vectorcardiogram computed. Selective beat averaging applied to the night period resulted in averages preceded by the same stable heart rate (for each 10 msec bin amplitude, in the range 900-1200 msec). For each template (i.e., one for each bin), T-wave maximum amplitude (Tmax), T wave area, R-Tapex and R-Tend were computed. Results (in 8 male volunteers) showed that, compared to PRE, at HDT5 both R-Tapex and R-Tend resulted significantly shortened (-5% and -3%, respectively), together with a decrease in T-wave area (-7%), while Tmax was unchanged. At POST, duration parameters showed a trend towards their control values (-1.5% and -3%, respectively) while amplitude parameters resulted restored. Despite the short-term BR, cardiac adaptation to deconditioning affected ventricular repolarization during the night period. © 2012 CCAL

    Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events – a case study

    Get PDF
    Gravity waves (GWs) and convective systems play a fundamental role in atmospheric circulation, weather, and climate. Two usual main sources of GWs are orographic effects triggering mountain waves and convective activity. In addition, GW generation by fronts and geostrophic adjustment must also be considered. The utility of Global Positioning System (GPS) radio occultation (RO) observations for the detection of convective systems is tested. A collocation database between RO events and convective systems over subtropical to midlatitude mountain regions close to the Alps and Andes is built. From the observation of large-amplitude GW structures in the absence of jets and fronts, subsets of RO profiles are sampled. A representative case study among those considered at each region is selected and analyzed. The case studies are investigated using mesoscale Weather Research and Forecasting (WRF) simulations, ERA-Interim reanalysis data, and measured RO temperature profiles. The absence of fronts or jets during both case studies reveals similar relevant GW features (main parameters, generation, and propagation). Orographic and convective activity generates the observed GWs. Mountain waves above the Alps reach higher altitudes than close to the Andes. In the Andes case, a critical layer prevents the propagation of GW packets up to stratospheric heights. The case studies are selected also because they illustrate how the observational window for GW observations through RO profiles admits a misleading interpretation of structures at different altitude ranges. From recent results, the distortion introduced in the measured atmospheric vertical wavelengths by one of the RO events is discussed as an illustration. In the analysis, both the elevation angle of the sounding path (line of tangent points) and the gravity wave aspect ratio estimated from the simulations and the line of sight are taken into account. In both case studies, a considerable distortion, over- and underestimation of the vertical wavelengths measured by RO, may be expected

    A method to improve the determination of wave perturbations close to the tropopause by using a digital filter

    Get PDF
    GPS radio occultation satellite data allowed to analyze in the last decade for the first time a large amount of atmospheric temperature profiles including both the troposphere and the stratosphere all over the globe. Wave amplitude enhancements have been systematically observed around tropopause levels, which are apparently due to artifacts generated by any digital filter used to isolate the wave components from these data. We present a new filtering method which can be equally applied to temperature or refractivity profiles. It was tested with synthetic temperature data based on NCEP reanalyes and observed wave climatologies and it was also statistically validated with GPS radio occultation profiles from the COSMIC mission. The suggested technique significantly reduces artificial enhancements around the tropopause, mainly at low latitudes, where a sharp lapse rate change usually exists. This represents an improvement in comparison to previous applications of standard filters. In addition it would allow the study of longer vertical wavelengths than previously done with other filtering procedures

    Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave

    Get PDF
    Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3◦ W, −51.6◦ S) and Río Grande (−67.8◦ W, −53.8◦ S), in the neighborhood of the austral tip of South America. This is a well-known GWhot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GWin the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GWstructure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GWhigh season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.Facultad de Ciencias Astronómicas y GeofísicasConsejo Nacional de Investigaciones Científicas y Técnica

    Tropospheric Products from High-Level GNSS Processing in Latin America

    Get PDF
    ARTÍCULO PUBLICADO EN REVISTA EXTERNA. The present geodetic reference frame in Latin America and the Caribbean is given by a network of about 400 continuously operating GNSS stations. These stations are routinely processed by ten Analysis Centres following the guidelines and standards set up by the International Earth Rotation and Reference Systems Service (IERS) and International GNSS Service (IGS). The Analysis Centres estimate daily and weekly station positions and station zenith tropospheric path delays (ZTD) with an hourly sampling rate. This contribution presents some attempts aiming at combining the individual ZTD estimations to generate consistent troposphere solutions over the entire region and to provide reliable time series of troposphere parameters, to be used as a reference. The study covers ZTD and IWV series for a time-span of 5 years (2014–2018). In addition to the combination of the individual solutions, some advances based on the precise point positioning technique using BNC software (BKG NTRIP Client) and Bernese GNSS Software V.5.2 are presented. Results are validated using the IGS ZTD products and radiosonde IWV data. The agreement was evaluated in terms of mean bias and rms of the ZTD differences w.r.t IGS products (mean bias 1.5 mm and mean rms 6.8 mm) and w.r.t ZTD from radiosonde data (mean bias 2 mm and mean rms 7.5 mm). IWV differences w.r.t radiosonde IWV data (mean bias 0.41 kg/m2 and mean rms 3.5 kg/m2).Sitio de la revista: https://link.springer.com/chapter/10.1007/1345_2020_12

    The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight

    Get PDF
    We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere

    A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights

    Get PDF
    To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al., 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances
    corecore